# 中性塩水溶液の純水・塩の種類と pH 変動について

\* 渡辺 真 \*\* 昼間健史

### 1. 概要

塩水噴霧試験や複合サイクル試験などの腐食促進 試験では主に5%中性塩水溶液を噴霧させて耐食 性評価を行っている。使用する5%中性塩水溶液 は ISO 9227-2012 <sup>1)</sup> では、水温 25 ± 2℃で伝導率 20 μ S/cm 以下の脱イオン水または蒸留水を使用 し、噴霧後採取した溶液が pH 6.5 ~ 7.2 の範囲内 であることと明記されている。そのため、溶液作 製時は塩溶液の pH が 6.0 ~ 7.2 の範囲内に調整す る必要があると ISO 9227 に記載されている。

実際にはイオン交換樹脂や RO 膜 (逆浸透膜)、 EDI(電気再生式イオン交換装置)などで精製した 純水を用い、特級の塩化ナトリウム(純度:99.5% 以上)により5%中性塩水溶液を作製しpH調整を 行って噴霧試験を実施している。しかし、純水と いっても精製方法の違いにより水溶液内成分が異 なり、さらには各国により規定されている塩も様々 で、一言に塩水溶液を作ったといっても pH が全 く違うものができてしまう場合が生じてしまう。さ らに、そのまま調整せず使用した場合、腐食試験 の結果にまで影響を及ぼす可能性がある。

そこで、純水の精製方法の違いまたは市販されて いる塩の種類により作製した5%中性塩水溶液の pHはどのように変動するかを検証し比較した。

## 2. 純水の精製方法の違いによる pH 変動

通常、水の酸性度つまり pH は H<sup>+</sup> と OH<sup>-</sup> の関係で 含有比率が 1:1 で pH が 7.0 である。しかし、時 間が経つにつれ大気中の炭酸ガスが溶け込み H<sup>+</sup> イオンが増し、弱酸性になるといわれている<sup>2)</sup>。 実際の純水の pH 測定はガラス電極の内部液と純 水との pH の差が小さいため起電力が小さく、pH 緩衝能が低いのでガラス電極表面における反応が 平衡に達するまでの時間が長くなり応答が遅くな る。また導電率が低いことから比較電極の動作が 不安定になり値がふらついてしまう3)。 以上の理 由から瞬時値を読み取り同時に電気伝導率を測定 した (堀場製作所製 卓上型 pH計 (F-73) を使用)。 今回比較した純水はイオン交換樹脂で精製した水 (純水 A: 伝導率 1.35 μ S/cm)、イオン交換樹脂と RO 膜で精製した水 (純水 B: 伝導率 0.49 μ S/cm)、 EDI 処理した水 (純水 C: 伝導率 0.05 µ S/cm) の 3 種を精製採取直後と採取24時間大気中に放置した 後の pH を測定した。測定結果を図1に示す。

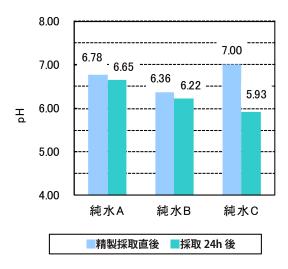



図 1. 精製した純水の pH 変動

いずれも精製方法に関わらず時間が経つにつれて 採取直後に比べ pH が酸性側に変動していること が確認できた。特に EDI 処理した純水は他の純水 に比べて不純物質を多く除去しているために炭酸 ガスを多く含むことで変動が大きく、24時間後に は一番酸性度が高くなっていると考察できる。以 上の測定結果から中性塩水を作製する以前に、す でに純水自体が大気中の炭酸ガスを含むことによ り弱酸性になっているということを念頭に置く必 要がある。

## 3. 各国で使用される塩で作製した 5% 塩水溶液の pH 比較

概要で述べた通り 5% 中性塩水の pH は 6.0 ~ 7.2 の範囲に調整する必要がある。塩は、さまざまな 規格で規定され、溶解させることにより pH の変 動が大きくなることが予想される。

今回、検証する塩は日本やアメリカで規定されて いる塩水噴霧試験で主に使用される JIS(日本工業 規格)、ASTM(米国試験材料協会)、ACS(アメリカ 化学会)とフランスの自動車メーカで実際使用し ている塩の4種を用いた。また純水は前項で検証 した純水の3種を使用し、5%の濃度に溶解させ 塩水溶液を作製し、攪拌したのち3時間静置させ 測定を行った。その結果を図2、表3に示す。

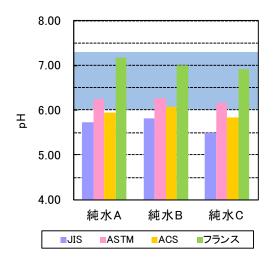



図 2. 各規格の塩を使用した塩水溶液の pH 比較 (青帯部分が調整範囲)

表 3. 各規格の塩を使用した塩水溶液の pH

|      | 純水 A | 純水 B | 純水C  |
|------|------|------|------|
| JIS  | 5.73 | 5.82 | 5.49 |
| ASTM | 6.25 | 6.26 | 6.17 |
| ACS  | 5.96 | 6.07 | 5.84 |
| フランス | 7.17 | 7.00 | 6.92 |

ASTM とフランス使用の塩はいずれも範囲内であ るが、JIS と ACS の塩は調整範囲を下回ってしまう ことが確認できた。そのためアルカリ液である水 酸化ナトリウム水溶液で pH 調整する必要がある。 使用する塩の種類により塩溶液の pH が異なるこ とから試験の再現性を高めるには一定の pH 値に 調整することが重要である。

#### 4. 終わりに

今回、純水の精製方法の違いと市販されている塩 の種類により塩水溶液の pH は大きく異なること、 中には基準範囲に入らないケースがあることが確 認できた。どのような純水,塩を使うのか確認し pH を常に基準範囲内に収めておきながら試験を実 施することが重要である。さらに、中性塩水溶液 はそのまま大気に触れているだけで pH が容易に 変動してしまう。そのため pH 調整後は大気に接 触しないよう空気遮断ボードにより pH 変動を抑止 することが有効であり、試験の再現性を高める <sup>4)</sup>。 ISO 9227 ではこの点に留意し「During operation, the solution should be free from dust and should be isolated from ambient air to prevent the concentration of sodium chloride and the pH from fluctuating」と記載している。

## 【参考文献】

- 1) ISO 9227-2012 Corrosion tests in artificial atmospheres -Salt spray tests.
- 2) Truman S. Light: Analytical Chemistry, 56 (7), 1138(1984).
- 3) 堀場製作所 技術資料 pH 測定の基礎
- 4) スガテクニカルニュース No.182(2002.8)

\* 製造本部 製造技術部 部長 \*\* 製造本部 製造技術部