

リポート

国際規格の動向-国際会議に出席して-

- •ISO/TC61(プラスチック)韓国•大田(テジョン)国際会議
- ・ISO/TC38(繊維)/SC1(染色堅ろう度)アメリカ・ニューオリンズ国際会議

トピックス

- •8th European Weathering Symposium EWS
- ·AIC2017 国際色彩学会
- ·IEC1906賞 受賞
- •平成29年度地方発明表彰 中小企業庁長官賞 受賞

製品紹介

・多角度光沢計 GS-3KZ-シリコンウェーハの鏡面光沢度を測定-

技術リポート

・屋外暴露試験と浸漬サイクル型分光老化試験による考察 塗膜の紫外線及び吸水による劣化について

耐候(光)基礎講座

・促進耐候(光)性試験の歴史と発展(27)

技術リポート

・太陽エネルギーの観測結果2017年7月~9月

トピックス

- ・関連団体のお知らせ スガウェザリング技術振興財団 清水司先生を偲ぶ
- •展示会、講演

日高・川越工場のどんぐり

2017 年 11 日 7 日場界

国際規格の動向一国際会議に出席して一

須賀茂雄

ISO/TC61(プラスチック) 韓国・大田(テジョン)国際会議

2017年9月18日~22日に韓国・大田(テジョン)の DAEJEON CONVENTION CENTERにて開催され、当社喜 多英雄と片野邦夫と共に出席した。当社に関係する審 議について報告する。

(1) SC2(機械的性質)/WG2(硬さ及び表面特性)

開催日:2017年9月18日

参加国:中国・チェコ・インド・ドイツ・マレーシア・韓国・

イギリス・日本 8ヶ国 23名

日本提案(当社片野がPL(プロジェクトリーダー))の ISO/CD 20329(すべり摩擦によるアブレシブ摩耗への耐性の求め方)の投票の結果は、反対国無しの100% 賛成で承認された。今回の会議では、CD投票時に寄せられたコメントが議論され、DISステージに移行することが満場一致で合意された。

(2) SC4(燃焼挙動)/WG8(着火、燃焼の広がり及び燃 焼発熱)

開催日:2017年9月21日

参加国:ベルギー・フランス・インド・韓国・イギリス・アメリカ・日本 7ヶ国 20名

·ISO/NP 4589-4(酸素指数による燃焼性の試験方法一高流速試験)

日本提案の本件については、JAXAを中心とした規格 開発プロジェクト関係者(当社片野含む)により、規格 案の構成やRRT(ラウンドロビンテスト)計画、高流速酸 素指数試験装置の開発状況など、プロジェクトの進捗 状況についてのプレゼンテーションが行われた。当初 規格の構成としては高流速酸素指数試験装置の仕様 /試験方法、およびその高流速酸素指数やその他の パラメータにより微小重力環境での酸素指数予測方 法を予定していた。しかし、議論の結果、高流速酸素 指数の求め方に限定したものとすることで、提案への 支持を得た。日本よりその変更を反映したNP文書を早 急に提出することとなった。

なお、当社片野がPLのISO 4589-1,-2,-3(酸素指数による燃焼性の試験方法一通則/常温/高温)については、FDIS投票が2017年2月に終了し、4月にsecond editionとして発行に至っている。

·ISO 9772(小火炎による小試験片の水平燃焼特性の求め方)

インドが、試験炎と試験片の位置関係等の規定の改善案についてプレゼンテーションを行った。WG8はNPとしての提出を支持し、インドからの文書提出を待つこととなった。

(3) SC6(耐候性)/WG2(光暴露)

開催日:2017年9月18日,19日

参加国:ドイツ・チェコ・フランス・インド・韓国・イギリス・アメリカ・マレーシア・日本 9ヶ国 28名

·ISO 877シリーズ(プラスチック一屋外暴露試験)は、 Part3以外は、開発期間が残り少ないため、一旦キャンセルし再度改訂作業をスタートすることになった。 Part3はFDIS投票に進むことになった。

・ISO/NP 21488(人工光源+屋外暴露試験)は、試験データについて説明があり、6週間後までに、CD投票を開始する。

・日本提案(当社喜多がPL)のISO/CD 21475(分光 老化試験)は、CDのコメントを一部受け入れ、DISで追 加する内容について説明があり、DISをPLが用意する。

·ISO/TR 18486(実験室光源のパラメータ比較)は、スコープは変えずに、18ヶ月の期間で改訂作業を開始することになった。

·Florian Feil(ドイツ)委員から耐候試験における作用 エネルギーについての提案がされNPとして進めること になった。

・Artur Schönlein(ドイツ)コンベナーからISO 4892-2 の照射/降雨サイクルについてリングテストの提案があ

り、興味のあるメンバが参加することになった。

·ISO/TR 19032(ポリエチレンリファレンス試験片)は、 紺野委員からポリエチレンリファレンス試験片が入手不 可なため廃止の提案がされたが、来年改訂の作業を 行いその結果で決定する。

(4) SC6(耐候性)/WG3(諸暴露)

開催日:2017年9月19日

参加国:アメリカ・ドイツ・チェコ・イギリス・フランス・イン ド・中国・韓国・日本 9ヶ国 22名

·ISO/CD19721(人工芝の耐候性試験)のコメントに対 して議論され、追加された試験結果の説明が行われ た。ただし、CDに対してのobservationが出ていないこと などから、再度関係する資料をWG内で回送する。本 規格の開発期限が近付いているため、一旦キャンセ ルし、再度新規案件としてスタートする。

Gray Cornell(アメリカ)委員から耐候試験でのスプレー 水量の最低量について提案があり、NPとして進めること になった。

TC61 会議風景

次回は、2018年9月24日~28日、日本・大宮で開催予定。

< ISO 規格発行までの手順> 予備段階 P\WI Preliminary Work Item (Project) 提案段階 NIP New Proposal for a work item 作成段階 WD Working Draft 委員会段階 CD Committee Draft 照会段階 DIS Draft International Standard 承認段階 FDIS Final Draft International Standard 発行段階 International Standard

ISO/TC38(繊維)/SC1(染色堅ろう 度)アメリカ・ニューオリンズ国際会議

2017年10月10日~13日にアメリカ・ニューオリンズにて 開催され、当社喜多英雄と共に出席した。当社に関係す るSC1の審議について報告する。

開催日:2017年10月11日

参加国:イギリス・ドイツ・アメリカ・フランス・日本 5ヶ国 27名

- (1) WG1(耐光) ISO 105-B06(高温下の耐光試験) NPの投票を行う。その後RRTを行う予定。
- (2) WG5(添付白布) ISO 105 Fシリーズ(添付白布) マスター染色布を管理する担当国は、2017年11月 末までにSC1セクレタリに入手が可能かを報告する。 日本担当はISO 105-F06(絹)。
- (3) WG7(測色) ISO 105-A03(グレースケール) 改正NP(許容差変更)が承認された場合WG7にて作 業する。
- (4) WG13(その他) 当社喜多が、摩擦試験機Ⅱ形(学 振形)法(JIS L 0849)のプレゼンテーションを行った。 試験法及びクロックメーター(ISO 105-X12)との比較 共同試験結果(学振134委員会で実施)を紹介した。 今回発表のデータと、比較共同試験の結果を1機関 で再評価した結果を、WG13内で回送して議論するこ とになった。
- (5) SC1 ISOブルースケールのL4について入手性、品 質面、確認の方法で議論があった。

TC38 会議風景

8th European Weathering Symposium EWS

2017年9月20日~22日にヨーロッパのウェザリングシン ポジウム8th European Weathering Symposium EWSが オーストリアのウィーン、LINDNER Hotel am Belvedereに て行われました。当社喜多英雄が"Identifying the causal agent for degradation of materials due to selective, solar radiation"について発表しました。この発 表は、現在日本からISO/TC61/SC6(プラスチック/耐候 性)で新規提案中の分光老化試験方法についての説明 で、この試験方法は、キセノンランプの照射光を分光器で 分光し、同一の試験片上に照射する方法。試験方法の 原理、装置の内容について説明を行い、実際の試験結 果と、今後の展望について発表しました。この試験により 試験片の分光劣化特性の調査が可能で、聴講者の関 心を集めました。

代表取締役社長 須賀茂雄 IEC1906賞 受賞

IEC 1906賞はIEC(国際電気標準会議)がIECの技術活 動に関連し、電気技術の標準化及びその関連活動への 多大な貢献・業績を称えるため、専門家(個人)に対し、 授与するものです。今回、当社社長須賀茂雄がIEC/ TC104(環境条件/分類及び試験方法)の業績により受 賞し、2017年10月23日にホテルニューオータニにて表 彰式が執り行われました。

エスペック㈱石田俊己氏 須賀茂雄社長

新日鉄住金エンジニアリング㈱伊藤 叡氏 (IEC/1906 賞) (工業標準化事業表彰·経済産業大臣賞)

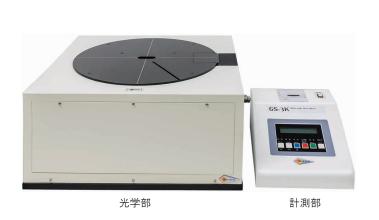
AIC2017 国際色彩学会

第13回国際色彩学会が2017年10月16日から20日ま で韓国の済州島にて開催されました。

当社喜多英雄が「Image Clarity-New Technology to Perfect Optical Properties of Surfaces について論文 発表を行いました。Image Clarity(像鮮明度)の測定方 法はISO 17221(プラスチック)に規定されている他、現 在ISO/TC35/SC9(塗料)においてISO/DIS 20266(PL 喜多)として審議されています。

代表取締役社長 須賀茂雄 平成29年度地方発明表彰 中小企業庁長官賞 受賞

公益社団法人発明協会が行っている平成29年度地方 発明表彰、関東地方発明表彰式が2017年11月2日に パレスホテル大宮にて行われました。


当社社長須賀茂雄が結露防止型温湿度サイクルガス 腐食試験装置(特許第4920726号)において中小企業 庁長官賞を受賞しました。

多角度光沢計 GS-3KZ

*加藤光利

シリコンウェーハの鏡面光沢度を測定。

■概要

シリコンウェーハの鏡面光沢度を測定できる光沢計です。3つの測定角度毎の鏡面光沢度が評価できます。測定面がフラットで、大きな試料も乗せることができます。

■特長

- 1. 測定角度は20°、60°、85°の3角度。
- 2. 試料を試料台に乗せるだけで測定値が表示されます。

JIS Z 8741鏡面光沢度一測定方法に準拠した光沢度が測定できます。

- 3. 試料を傷付けないように、試料台表面には傷付防止用コートが施されています。
- 4. 試料台には溝が彫られていて、溝にピンセットを入れれば薄い試料も簡単に取ることができます。
- 5. 試料台の直径が約 φ 400mmで、大型の試料も加工 せずにそのまま測定できます。

■仕様

測定項目	GsS(最初の鏡面光沢度測定値) Gs(鏡面光沢度測定値) △Gs(最初の測定値との差〈GsS-Gs〉) GR(光沢残存率又は光沢保持率〈Gs/GsS〉)
測定角度	入射角(光源)、受光角(受光器) :20°、60°、85°
測定孔	20 × 50mm
光源	ハロゲンランプ 6V10W (寿命約 2000 時間)
受光器	シリコン光電池とフィルタの組み合わせ (D65 光)
試料台	直径 約 ϕ 400mm
本体寸法	光学部: 約幅 51 ×奥行 51 ×高さ 25cm 計測部: 約幅 23 ×奥行 32 ×高さ 14cm
電源容量	AC100V 約 1A 50Hz/60Hz
運転質量	約 18kg

屋外暴露試験と

浸漬サイクル型分光老化試験による考察

*渡辺 真 ** 大塚健太

塗膜の紫外放射及び吸水による劣化について

1. 概要

塗膜の目的は、美しく、基材を腐食から守り、そして汚れ 防止や遮熱等の機能を持たせるためにある。塗膜は、社 会インフラ、建物、自動車、生活用品に無くてはならない 物で、その耐久性向上・長寿命化への要求は、近年 増々厳しくなっている。塗膜の耐候劣化の大きな要因の 一つに、紫外放射と水分吸収の相互作用による劣化¹⁾が ある。自然環境下に於いてこの相互作用により変退色や 光沢低下、割れ等の表層劣化がより促進される。さらに 劣化部位からの水分透過が加速されることにより基材か ら剥離することで腐食が発生し、やがて塗膜性能の維持 が出来なくなる。

本報告では屋外暴露試験結果と気象因子の特徴から、 水分吸収と塗膜劣化促進への関わりを推測した。更に、 **漆膜の耐候劣化における水分吸収による影響を実験室** で評価する為に、分光老化試験機で浸漬試験が可能な 装置を製作し、光照射のみの乾燥試験と浸漬・乾燥のサ イクル試験の比較試験を実施した。

2. 試験方法

2. 1試験片

試験片は、緑色ポリウレタン樹脂(PuG)塗装板、白色フッ 素樹脂(FW)塗装板、電気亜鉛メッキ処理有(G15)と無 (S15)にクリアトップコートを施した塗装板の4種類とした。

2. 2屋外暴露試験

屋外暴露試験は、①都市環境の東京(新宿)と②2つの

火山が近い鹿児島(霧島)、③亜熱帯海洋性気候の沖 縄(宮古島)、④アメリカ東海岸のフロリダ、⑤砂漠乾燥 気候のアリゾナの5か所に於いて2年の期間で実施し、光 沢保持率で評価した。気象因子の測定値を表1に示す。 紫外放射露光量はアリゾナ、温度はフロリダ、湿度は鹿 児島、飛来海塩粒子量は沖縄がそれぞれ高い傾向で あった。

2. 3分光老化試験

分光老化試験は、光源にキセノンランプを用い、照射光 を回折格子により単色光に分光し、同一の試験片上に 波長の異なる光を連続的に照射させ、試験片がどの波 長で劣化するかを評価する促進耐候性試験である。本 報告では、試験片を液体に浸漬させることが可能な容器 内に設置し、液体供給ポンプを用いて液体を供給させる 浸漬試験と、空気供給ポンプを用いて気体を供給させる 乾燥試験と、これら浸漬試験と乾燥試験を自動で繰り返 し行うサイクル試験が可能な装置を製作し、分光老化試 験と浸漬サイクル試験を組み合わせて行った。装置の概 略図を図1に示す。試験は、放射照度を100W/m²(at 300nm)、浸漬液は純水とし、試験サイクル時間を浸漬 試験が4時間、乾燥試験が1時間を繰り返し、合計100 時間とした。試験サイクル時間は、塗膜における水分の 吸水量及び発散量が最大値の約90wt%に達する時間 を、吸水・発散試験により求め、本試験条件として設定し た。試験結果は、色差で評価し、評価した波長範囲は 250~480nm(照射波長範囲220~520nm)とした。

表 1 気象因子の測定値

項目	①東京	②鹿児島	③沖縄	④フロリダ	⑤アリゾナ	
紫外放射露光量(300-400nm)	MJ/m²	286	330	361	396	450
BPT (年平均)	℃	20	18	29	28	24
温度(年平均)	℃	16	16	23	24	23
湿度(年平均)	%RH	61	87	77	75	35
降雨量	mm/year	1714	2071	1603	1080	264
飛来海塩粒子量	mg.NaCl/m ² day		89	367		_

*開発部 プロジェクトT 技術主幹 **企画部 知的財産課 主査

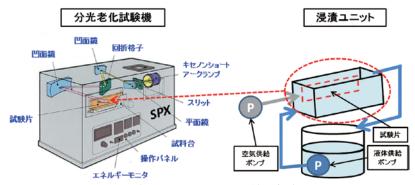


図 1 浸漬サイクル型分光老化試験機の概略図

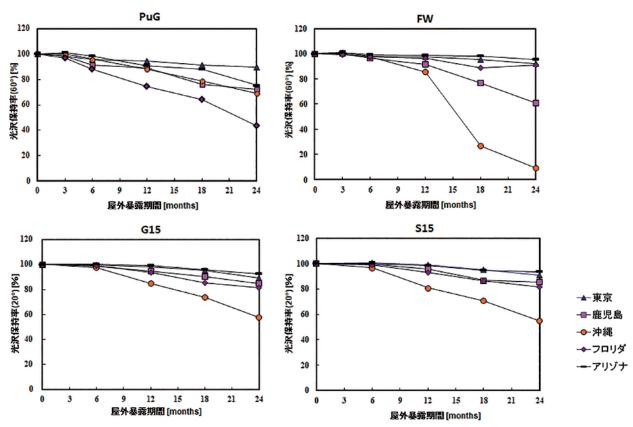


図2 屋外暴露試験の試験結果

3. 試験結果

3. 1屋外暴露試験

図2に屋外暴露試験の光沢保持率を示す。殆どの試験 片で、海塩粒子が多く湿度が高い沖縄の光沢保持率の 低下が大きかった。特にFWは他の暴露地と比較して著し く光沢保持率が低下した。海塩粒子の付着及び水分の 吸収が塗膜の劣化に大きく関わっていることが推測され る。

3. 2分光老化試験

図3に分光老化試験における照射のみの乾燥試験と浸 漬・乾燥サイクル試験の100時間試験後の色差変化を 示す。照射のみの乾燥試験と比較して浸漬・乾燥サイク ル試験の色差は、照射波長300nmに於いて、G15は1.5 倍、PuGとS15は2倍と大きく変化し、塗膜の水分吸収が 劣化に大きな影響を与えることが確認できた。しかし、耐 候性の強いFWについては、変化を明確にとらえることが 出来なかった。これは、試験時間が100時間と短いこと と、酸化チタンの光触媒反応が400nm前後以下の広範 囲の波長域で作用する2)ことが原因と考えられる。

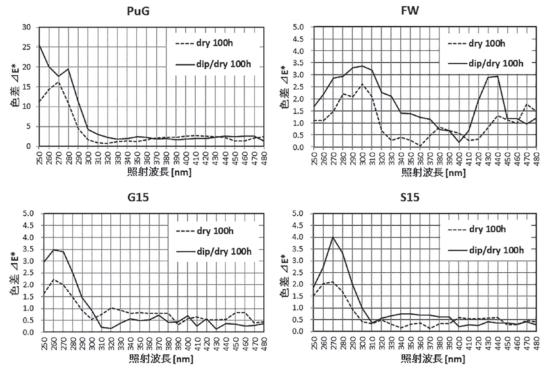


図3 分光老化試験の試験結果

図4に分光老化試験におけるPuGの照射のみの乾燥試 験と浸漬・乾燥サイクル試験の100時間試験後の試験 片全体と、浸漬·乾燥サイクル試験後の290nm部と 450nm部の拡大写真(500倍)を示す。310nm以下の波 長で退色が観察され、浸漬・乾燥サイクル試験の方が顕 著に観察された。拡大写真にて290nm部と450nm部とを 比較すると、290nm部の方が凹凸が大きくなっている事 から、表面の劣化物が消失したものと考えられる。

4. まとめ

屋外暴露試験の暴露環境(気象因子)による試験結果 の差を考察した。更に、水分吸収を促進試験に追加し評 価する方法として浸漬サイクル型分光老化試験機を用 いて、紫外放射と水分吸収による複合的劣化の影響を 確認した。

(1)沖縄暴露は、他の暴露地に比べ高温及び塩化物付 着によって濡れ時間が長くなることによる塗膜の紫外放 射と水分吸収により、光沢保持率の低下に影響を与えて ると推測される。

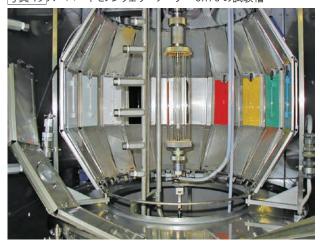
試験片全体(上:乾燥試験、浸漬・乾燥サイクル試験)

図 4 分光老化試験後の試験片(PuG)の写真

(2)分光老化試験は、紫外放射による塗膜の劣化波長 を確認することができ、更に浸漬試験条件を加えることに より、水分吸収が塗膜の劣化を更に促進することが確認 された。

参考文献

- 1)色材:69「第7章 塗膜の強さと耐候性」(1996)
- 2)日本酸化チタン工業会:光触媒入門


促進耐候(光)性試験の歴史と発展(27)

須賀茂雄 木村哲也

5.4.3 促進耐候性試験機でのカラーパネル温度

促進耐候性試験機を用いて、屋外暴露試験に用いたも のと同じカラーパネルの表面温度を測定した。一例とし て、温度測定した時のスーパーキセノンウェザーメーター の試験槽内に取り付けたカラーパネルの写真を写真19 に示す。また、1分間隔で連続測定した結果を図103~ 105に示す。

写真 19 スーパーキセノンウェザーメーター SX75 の試験槽

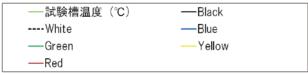


図 103 ~ 108 の凡例

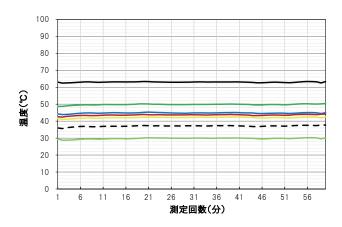


図 103 スーパーキセノンウェザーメーター SX75 でのカラーパネルの表 面温度測定(放射照度 180W/m² BPT63℃)

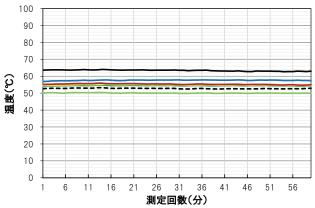


図 104 スーパーキセノンウェザーメーター SX75 でのカラーパネルの表 面温度測定(放射照度 60W/m² BPT63℃)



図 105 スーパーキセノンウェザーメーター SX75 でのカラーパネルの表 面温度測定(放射照度 180W/m² BPT89℃)

同様に、サンシャインウェザーメーター、紫外線フェード メーター、メタリングウェザーメーターについてもカラーパ ネルの温度測定を行った。各試験条件とその結果を図 106~108に示す。各試験結果の平均を求めて、表38 に示す。

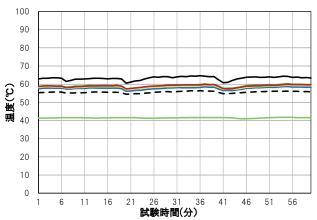


図 106 サンシャインウェザーメーター S300 でのカラーパネルの表面温 度測定 (BPT63℃ 放電電圧・電流 50V 60A)

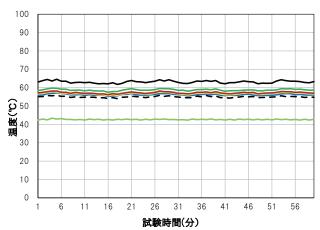


図 107 紫外線フェードメーター U48 でのカラーパネルの表面温度測定(試験槽温度 42℃ 放電電圧・電流 135V 16A)

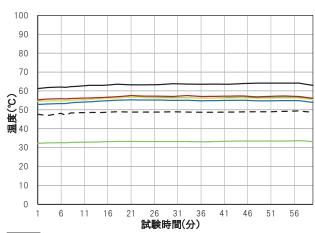
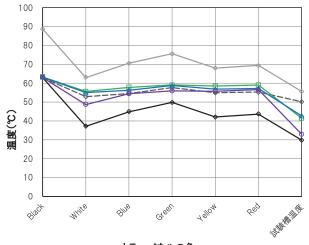



図 108 メタリングウェザーメーター MV3000 でのカラーパネルの表面 温度測定 (BPT63°C 放射照度 0.53kW/m²)

表 38 試験機・試験条件別カラーパネルの表面温度

	試験機・ 試験条件	スーパーキセ /ンウェザー メーター BPT63℃ 放射照度 180W/m²	スーパーキセ /ンウェザー メーター BPT63℃ 放射照度 60W/m²	スーパーキセ ノンウェザー メーター BPT89℃ 放射照度 180W/m²	サンシャイ ンウェザー メーター BPT63℃	紫外線 フェード メーター 試験槽温度 42℃	メタリング ウェザー メーター BPT63℃ 放射照度 0.53kW/m²
<i>h</i>	Black	62.9	62.9	88.7	63.3	63.1	63.0
カラー	White	37.1	52.8	62.9	55.6	55.0	48.6
パ	Blue	44.8	54.5	70.6	57.7	56.2	54.4
ネル	Green	49.8	57.6	75.6	59.1	58.8	55.9
の	Yellow	42.1	54.9	67.9	58.5	56.8	55.7
色	Red	43.6	55.3	69.4	59.0	57.2	56.6
槽内	試験槽温度	29.8	50.1	55.6	41.5	42.7	33.0

いずれの結果も若干の順位の違いはあるが、黒パネルの温度を最高に緑・青・赤・黄ー白と試験槽内温度の順位には変わりはない。試験機ごとの各カラーパネルの温度のグラフを図109に示す。

カラーパネルの色- スーパーキセノンウェザーメーター BPT63°C 放射照度 180W/m²
- スーパーキセノンウェザーメーター BPT63°C 放射照度 60W/m²
- スーパーキセノンウェザーメーター BPT89°C 放射照度 180W/m²
- ローサンシャインウェザーメーター BPT63°C
- 本 紫外線フェードメーター 試験槽温度 42°C
- タメタリングウェザーメーター BPT63°C 放射照度 0.53kW/m²

図 109 試験機によるカラーパネルの表面温度

前々回のスガ試験機(株)の屋上での暴露試験結果の 最高温度に近い時刻のカラーパネルの測定結果を表39 に示す。

表 39 屋外暴露時のカラーパネルの表面温度 (℃)

測定日時		7/27		8/1
カラーパネルの色	12:55	13:04	13:14	11:15
Black	60.2	60.4	58.1	50.9
White	44.2	43.8	42.9	37.7
Blue	49.8	49.9	48.2	42.5
Green	51.3	51.2	49.6	44.1
Yellow	47.6	47.3	46.1	41.1
Red	48.9	48.8	47.7	42.1
周囲温度				34.2

屋外暴露の結果は、促進耐候性試験機のキセノンアークと同じで、黒一緑・青・赤・黄ー白の順位である。

カラーパネルの温度と色の相関関係をみるため、各色の 光学濃度を求め、温度との関係を求めた。光学濃度と は、JIS Z 8120光学用語に規定されているように、「物質 が光を吸収する程度を表す量」で、単に濃度ともいい、D = log10(Io/I)の式で表される(Io: 入射光の強さ、I: 透過 光または反射光の強度)。色のついた試料に対して、光 がどれだけ反射或いは透過しないかの度合いを表したも ので、全て反射(又は透過)する場合、最小値は「0」にな り、数値が大きいほど濃いことを示す。通常の試料の色の 場合、0.00(白)から4.00(黒)くらいの光学濃度を示す。 表40は試験機ごとのカラーパネルの濃度と表面温度の 表である。スーパーキセノンウェザーメーターBPT 63℃ 放射照度180W/m²の濃度と温度の相関図を図110に、 BPT 63℃放射照度60W/m2の濃度と温度の相関図を 図111に、BPT 89℃放射照度180W/m²の濃度と温度 の相関図を図112に示す。

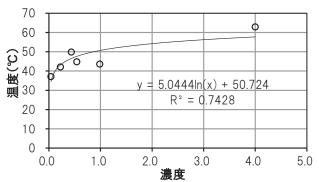


図 110 スーパーキセノンウェザーメーター SX75 BPT 63℃放射照度 180W/m² の濃度と温度

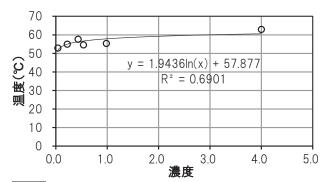


図 111 スーパーキセノンウェザーメーター SX75 BPT 63℃放射照度 60W/m² の濃度と温度

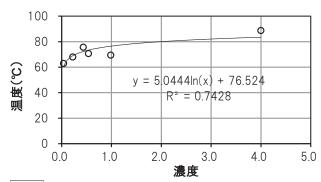


図 112 スーパーキセノンウェザーメーター SX75 BPT 89°C放射照度 180W/m² の濃度と温度

表 40 試験機・試験条件別カラーパネルの濃度と表面温度

試験機・試験条件		スーパーキセノン	スーパーキセノン	スーパーキセノン	サンシャインウェ	紫外線フェード	メタリングウェ
	濃度	ウェザーメーター	ウェザーメーター	ウェザーメーター	ザーメーター	メーター	ザーメーター
	辰反	BPT 63℃	BPT 63℃	BPT 89℃	BPT 63°C	試験槽温度	BPT 63℃
カラーパネルの色(℃)		180W/m ²	60W/m ²	180W/m ²	BF1 03 C	42°C	0.53kW/m ²
Black	4.000	62.9	62.9	88.7	63.3	63.1	63.0
White	0.041	37.1	52.8	62.9	55.6	55.0	48.6
Blue	0.540	44.8	54.5	70.6	57.7	56.2	54.4
Green	0.435	49.8	57.6	75.6	59.1	58.8	55.9
Yellow	0.223	42.1	54.9	67.9	58.5	56.8	55.7
Red	0.986	43.6	55.3	69.4	59.0	57.2	56.6

図に示すように濃度と指示温度の間には相関が高いことが分かる。他の条件においてもほぼ同じ傾向がある。6条件について相関式と相関係数を求めると表41のようになる。

同様に、表39の屋外暴露時の夏の日の最高温度時の表面温度と濃度を表42に示す。濃度と温度の相関を、図113、図114、図115、図116に示す。同様に濃度と表面温度の相関をまとめると、表43のようになる。

表 41 各試験機のカラーパネルの濃度と表面温度との相関式と相関係数

試験機・試験条件	濃度との相関式	濃度との 相関係数 (R ²)
スーパーキセノンウェザーメーター BPT 63℃ 放射照度 180W/m²	y=5.0444 × In(濃度)+50.724	0.743
スーパーキセノンウェザーメーター BPT 63℃ 放射照度 60W/m²	y=1.9436 × In(濃度)+57.877	0.690
スーパーキセノンウェザーメーター BPT 89℃ 放射照度 180W/m²	y=5.0444 × In(濃度)+76.524	0.743
サンシャインウェザーメーター BPT 63℃	y=1.5161 × ln(濃度)+60.071	0.839
紫外線フェードメーター 試験槽温度 42℃	y=1.5624 × In(濃度)+59.091	0.696
メタリングウェザーメーター BPT 63℃ 放射照度 0.53kW/m²	y=2.87 × In (濃度) +57.98	0.902

表 42 屋外暴露時のカラーパネルの濃度と表面温度

カラーパネル	濃度		7/27				
の色	辰	12:55	13:04	13:14	11:15		
Black	4.000	60.2	60.4	58.1	50.9		
White	0.041	44.2	43.8	42.9	37.7		
Blue	0.540	49.8	49.9	48.2	42.5		
Green	0.435	51.3	51.2	49.6	44.1		
Yellow	0.223	47.6	47.3	46.1	41.1		
Red	0.986	48.9	48.8	47.7	42.1		

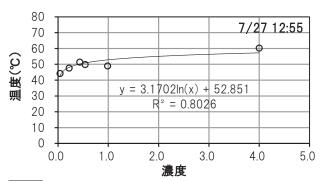


図 113 屋外暴露時のカラーパネルの濃度と表面温度

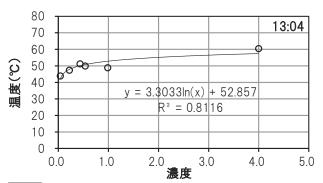


図 114 屋外暴露時のカラーパネルの濃度と表面温度

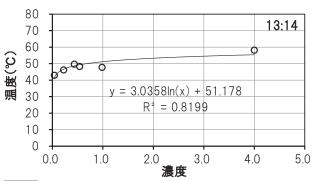


図 115 屋外暴露時のカラーパネルの濃度と表面温度

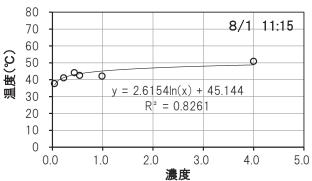


図 116 屋外暴露時のカラーパネルの濃度と表面温度

表 43 屋外暴露時のカラーパネルの濃度と表面温度の相関式と相関 係数

屋外暴露測定年月日・時刻	濃度との相関式	濃度との 相関係数(R²)	
屋外 7 / 27 12:55	y=3.1702 × In(濃度)+52.851	0.803	
13:04	y=3.3033 × In(濃度)+52.857	0.812	
13:14	y=3.0358 × ln(濃度)+51.178	0.820	
屋外 8 / 01 11:15	y=2.6154 × ln(濃度)+45.144	0.826	

促進性耐候試験機の結果も屋外暴露時の結果も温度 は濃度と相関があり、光源による差は若干あるが、材質 が同一であれば試料の濃度により表面温度は推定でき ると考えられる。

温度と濃度の相関をさらに詳細に検討するため明度を変 えた無彩色の塗装板について同様の実験を行った。測 色は、スガ試験機(株)製分光測色計SC-Tを用いて拡 散証明8°受光(de:8)の条件で測定を行った。実験に用 いた4枚の無彩色板の測色結果を表44示す。

表 44 無彩色カラーパネルの測色値と濃度

試料	X	Υ	Z	濃度	
白	88.41	90.71	105.00	0.042	
ライトグレイ	22.51	23.15	29.15	0.635	
グレイ	5.43	5.57	7.17	1.254	
黒	0.27	0.27	0.33	2.569	

スーパーキセノンウェザーメーターを用いて、照度を変え て測定を行った。フィルタ条件は、石英/L37/IR吸収で、 キセノンアークの紫外部と赤外部のエネルギーを減衰さ せた。結果を表45に示す。照度を30,000、50,000、 100.000lxに変えた時の濃度と温度の相関図を図117、 図118、図119に示す。濃度と温度の相関をまとめると、 表46のようになる。波長選択性のない無彩色の場合は、 さらに相関がよくなる。

表 45 無彩色カラーパネルの濃度と表面温度

試料	濃度	照度(lx)				
	辰反	30,000lx	50,000lx	100,000lx		
白	0.042	23.7	23.0	21.3		
ライトグレイ	0.635	24.4	24.2	24.1		
グレイ	1.254	24.8	24.8	25.3		
黒	2.569	25.0	25.0	25.4		

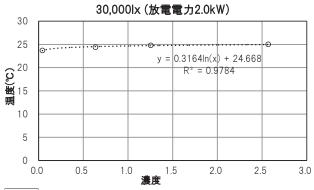


図 117 30,000lx の時の無彩色カラーパネルの濃度と温度の相関図

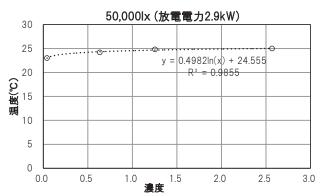


図 118 50,000 k の時の無彩色カラーパネルの濃度と温度の相関図

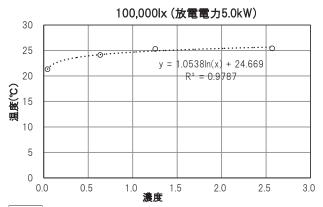


図 119 100,000 の時の無彩色カラーパネルの濃度と温度の相関図

表 46 無彩色カラーパネルの濃度と表面温度の相関式と相関

試験機試験条件	濃度との相関式	濃度との 相関係数(R ²)
30,000lx (放電電力 2.0kW)	y=0.3164 × In(濃度)+24.668	0.978
50,000lx (放電電力 2.9kW)	y=0.4982 × In(濃度)+24.555	0.986
100,000lx (放電電力 5.0kW)	y=1.0538 × ln(濃度)+24.669	0.979

【参考文献】

(1) スガ試験機(株) テクニカルニュース No.184 カラーパネル温度計 の測定結果

太陽エネルギーの観測結果

北緯 35°54'、東経 139°23' 観 測 場 所:スガ試験機㈱日高・川越工場※

測定角度:南面35度

測定波長域:紫外部(300-400nm)、可視部(400-700nm)、赤外部(700-3000nm)

位:MJ/m² (太陽から到達する面積 1m² 当たりの放射露光量)

測 定 器:積算照度記録装置 PH3T型(スガ試験機㈱製)

※本社社屋建替えに伴い 2015 年 11 月 14 日より日高・川越工場で観測を行っています。

積算照度記録装置 PH3T型

2017年7月

波長域(nm)	放射	射露光量 MJ/	m ²	平	均	波長域(nm)	放射	付露光量 MJ/	m²	平	均
	紫外部	可視部	赤外部	温度	湿度		紫外部	可視部	赤外部	温度	湿度
測定年月日	300-400	400-700	700-3000	°C	% rh	測定年月日	300-400	400-700	700-3000	°C	% rh
2017年7月1日	0.3322	2.236	1.235	23.3	93	17 日	1.1015	9.207	8.036	31.0	67
2日	0.8356	6.461	4.922	27.5	77	18 日	0.9527	7.662	6.819	27.4	78
3日	0.9998	8.090	6.968	30.0	75	19 日	1.2093	10.305	9.379	28.8	70
4 日	0.3797	2.804	1.740	26.6	86	20 日	1.1621	9.747	8.640	30.4	67
5 日	1.0147	8.066	6.805	28.1	77	21 日	1.3088	10.897	9.457	31.6	65
6日	1.0302	8.104	7.055	28.1	71	22 日	1.2416	10.346	8.967	31.8	65
7日	1.2706	10.960	10.113	30.2	64	23 日	0.4212	3.048	1.903	28.1	81
8日	1.2436	10.927	10.156	30.8	62	24 日	0.9053	7.434	6.177	30.7	75
9日	1.2729	11.153	10.510	30.9	64	25 日	0.5508	4.292	3.298	29.2	86
10 日	1.3237	11.330	10.638	30.6	69	26 日	0.2815	1.860	0.957	24.9	93
11 日	1.3328	11.151	9.977	30.9	67	27 日	0.5555	4.012	2.807	25.6	79
12 日	1.1421	9.370	8.103	31.4	69	28 日	0.9312	7.325	6.200	29.2	74
13 日	1.1716	9.664	8.006	31.6	66	29 日	0.3533	2.689	1.820	26.4	88
14 日	1.1472	9.237	7.772	31.2	65	30 日	0.4205	2.911	1.928	25.3	92
15 日	1.2920	10.920	9.788	31.9	63	31 日	1.1782	9.721	8.372	30.1	74
16 日	0.9293	7.755	6.493	30.9	69	合計	29.2915	239.682	205.040		
						全波長域合計		474.0135			

2017年8月

波長域(nm)	放射露光量 MJ/m²			平均		波長域(nm)	放射露光量 MJ/m²			平均	
	紫外部	可視部	赤外部	温度	湿度		紫外部	可視部	赤外部	温度	湿度
測定年月日	300-400	400-700	700-3000	$^{\circ}$	% rh	測定年月日	300-400	400-700	700-3000	$^{\circ}$ C	% rh
2017年8月1日	0.3937	2.858	1.846	26.4	90	17 日	0.7366	5.534	4.345	25.7	84
2日	0.4275	2.988	1.984	23.6	85	18 日	0.4197	3.061	2.031	26.0	90
3 日	0.9615	7.658	6.440	26.5	70	19 日	0.8830	7.252	6.470	27.0	86
4日	0.6600	5.100	4.126	26.8	82	20 日	0.6800	5.086	3.879	26.1	84
5日	1.0182	8.318	7.283	30.2	75	21 日	0.7811	6.346	5.526	27.3	83
6日	0.9897	8.283	7.594	30.7	77	22 日	0.9700	8.189	7.269	29.2	78
7日	0.9459	7.704	6.515	30.4	77	23 日	0.9601	7.983	6.685	29.8	75
8日	0.8081	6.220	4.661	29.6	82	24 日	1.0682	9.279	8.028	31.4	69
9日	1.1793	9.877	8.599	32.0	71	25 日	0.6793	5.476	4.152	29.4	77
10 日	0.3314	2.332	1.516	26.5	86	26 日	0.7508	6.096	5.091	28.3	80
11 日	0.3182	2.126	1.333	23.9	89	27 日	0.9447	7.807	7.212	27.5	63
12 日	0.9133	6.962	5.875	26.0	83	28 日	1.0318	8.965	8.104	27.7	70
13 日	0.6798	5.138	4.036	27.7	80	29 日	0.9673	8.399	7.287	30.0	73
14 日	0.5206	3.587	2.439	25.5	89	30 日	0.5955	4.950	4.352	27.4	85
15 日	0.1753	1.112	0.460	23.3	98	31 日	0.4551	3.301	2.346	23.3	81
16 日	0.3159	2.056	1.051	22.2	97	合計	22.5617	180.042	148.534		
						全波長域合計		351.1377			

2017年9日

2017年3万											
波長域(nm)	放射露光量 MJ/m²			平均		波長域(nm)	放射露光量 MJ/m²			平均	
	紫外部	可視部	赤外部	温度	湿度		紫外部	可視部	赤外部	温度	湿度
測定年月日	300-400	400-700	700-3000	°C	% rh	測定年月日	300-400	400-700	700-3000	°C	% rh
2017年9月1日	1.1959	10.291	9.531	23.9	70	16 日	0.2973	2.154	1.336	20.4	80
2 日	1.0773	8.940	8.224	21.2	79	17 日	0.2120	1.373	0.659	18.8	98
3 日	1.2231	10.977	10.289	24.6	68	18 日	1.1604	10.238	9.807	27.9	65
4日	0.3889	2.807	1.981	21.5	80	19 日	1.1018	10.005	9.949	26.2	66
5日	1.1212	9.782	9.333	25.9	69	20 日	0.4114	3.226	2.550	23.1	81
6日	0.2199	1.493	0.847	22.3	93	21 日	1.1961	10.870	10.973	24.5	58
7日	0.2269	1.756	1.173	22.6	94	22 日	0.4109	3.291	2.530	21.2	82
8日	0.9933	8.625	7.904	25.7	80	23 日	0.5614	4.372	3.330	20.8	88
9日	1.2198	11.033	10.971	25.8	69	24 日	0.9880	9.012	8.634	23.9	74
10 日	1.2211	11.426	11.226	27.1	71	25 日	1.0401	9.937	10.046	25.6	71
11 日	0.9070	7.704	6.872	26.9	73	26 日	0.9868	9.342	9.580	24.4	77
12 日	0.2867	2.168	1.341	24.3	89	27 日	0.6446	5.540	4.812	23.8	78
13 日	1.0732	9.475	8.989	27.8	69	28 日	0.4856	3.638	2.677	20.8	82
14 日	1.1977	10.937	10.798	27.6	64	29 日	1.1030	10.596	10.608	21.5	72
15 日	1.1078	9.911	9.932	25.1	56	30 日	0.7799	7.130	6.629	20.4	73
	·		·			合計	24.8388	218.045	203.530		
						全波長域合計		446.4138			

校正部 部長 喜多英雄

■関連団体のお知らせ スガウェザリング技術振興財団■

▶ 清水司先生を偲ぶ

スガ財団の審査委員長、理事長、評議員会議長を歴任された、清水司先 生が10月にご逝去されました。

清水先生は、1986(昭和61)年に当財団の理事にご就任以来、先代(須 賀長市理事長、須賀蓊理事)とともに当財団事業の道筋を作られ、30年 にわたり当財団をけん引して頂きました。生涯を通じわが国の教育に心血 を注いでこられ、当財団においても常にウェザリング技術者の人材育成の 重要性を説かれ多くのご支援を頂きました。

改めて清水先生への大恩を想い、謹んでご冥福をお祈り申し上げます。

公益財団法人スガウェザリング技術振興財団 理事長 須賀茂雄

故 清水司先生

経歴

早稲田大学 総長 東京家政大学 理事長 日本私学振興財団 理事長 中央教育審議会 会長 全国都道府県教育委員会連合会会長 など

スガ財団経歴 審査委員長 理事長 評議員会議長を歴任

展示会

TEST2017(第14回総合試験機器展)出展

日時:2017年9月13日(水)~15(金)

場所:東京ビッグサイト

試料回転式の複合サイクル試験機 CYP-100R型や卓上設 置の塩水噴霧試験機 STP-30型やヘーズメーター HZ-V3型 等を展示しました。実際に装置を操作しながら説明し、特に塩 水噴霧試験機 STP-30型に注目が集まりました。

画像関連学会連合会 第4回秋季大会

日時:2017年11月30日(木)~2日(土)

場所:京都工芸繊維大学60周年記念館 他

主催:画像関連学会連合会

日本画像学会、画像電子学会、日本写真学会、日本印刷学 会が2日間にわたり開催する秋季大会において、カラーメー ター製品の展示を行いました。

講演

一般社団法人日本鋼構造協会第40回 鉄構塗装技術討論会

日時:2017年10月19日(木)11:30~12:00

会場:自動車会館 2階 大会議室

講演者: 開発部プロジェクトT技術主幹 渡辺真

講演内容:「分光劣化試験機を用いた塗膜の紫外線 及び吸水による劣化の解析」について発表しました。

富山県工業技術センター 平成29年技術講習会

日時:2017年11月2日(木) 会場:富山県工業技術センター ものづくり研究開発センター

講演者:大阪支店営業課課長代理 覚野貴友

講演内容:「腐食とは何か?促進試験機の必要性·塩水噴霧試験(キャス試験)やJASO等の複合サイクル試験、腐食促進試験の最新動向」について発表しました。

JASIS 2017

第6回「やさしい科学機器入門」講座

日時:2017年9月6日(水)

場所:幕張メッセ国際展示場

講演者:開発部プロジェクトD課長代理 金原英司 講演内容:「塩水噴霧試験機」について発表しました。

一般社団法人日本高圧力技術協会 第18回エネルギー貯槽セミナー

日時:2017年11月22日(水)

場所:自動車会館 大会議室

講演者:開発部プロジェクトT係長 片野邦夫

講演内容:「腐食促進試験の概要と動向」につい

て発表しました。

本 社 光研究所 日高・川越工場 名古屋支店 大阪支店 広島支店 Suga Europe

〒 160-0022 東京都 新宿区 新宿 5-4-14 〒 160-0022 東京都 新宿区 新宿 6 - 10 - 2 〒 350-1213 埼玉県 日高市 高萩 1973 - 1 〒 465-0051 名古屋市 名東区 社が丘 1 - 605 〒 564-0053 大阪府 吹田市 江の木町 3 - 23

〒 733-0033 広島市 西区 観音本町 2 - 12 - 11 11 Lovelace Road, North Oxford, Oxfordshire, OX2 8LP, UK tel 03-3354-5241 fax 03-3354-5275 tel 03-6867-0810 fax 03-6867-0811 tel 042-985-1661 fax 042-989-6626 tel 052-701-8375 fax 052-701-8513 tel 06-6386-2691 fax 06-6386-5156

tel 082-296-1501 fax 082-296-1503 E-mail:i_sales@sugatest.co.jp

スガ試験機株式会社 Suga Test Instruments Co.,Ltd.

www.sugatest.co.jp www.suga-global.com